Analysis of the upstream regions governing expression of the chicken cardiac troponin T gene in embryonic cardiac and skeletal muscle cells
نویسندگان
چکیده
The chicken gene encoding cardiac troponin T (cTNT) is expressed in both cardiac and skeletal muscle during early embryonic development, but is specifically repressed in skeletal muscle during fetal development. To determine if the cis-acting sequences governing transcription of a single gene in these two related cell types are the same, we have transfected promoter/upstream segments of the cTNT gene coupled to the bacterial chloramphenicol acetyltransferase gene into primary cultures of early embryonic cardiac and skeletal muscle cells. Using this assay system, chloramphenicol acetyltransferase activity directed by the cTNT promoter/upstream region was between two and three orders of magnitude higher in cardiac or skeletal muscle cells than in fibroblast cells, indicating that cis elements responsible for cell-specific expression reside in this region of the cTNT gene. Deletion experiments showed that a 67-nucleotide DNA segment residing between 268 and 201 nucleotides upstream of the cTNT transcription initiation site is required for cTNT promoter activity in embryonic cardiac cells. This region is not required in embryonic skeletal muscle cells because a cTNT promoter construction containing only 129 upstream nucleotides is transcriptionally active in these cells. These results demonstrate that different cis-acting sequences are required for cTNT expression in early embryonic cardiac and skeletal muscle cells. Nonessential regions residing farther upstream, on the other hand, affected the level of expression of these minimum regions in a similar manner in both cell types. The data from these experiments indicate, therefore, that transcription of the cTNT promoter in early embryonic cardiac and skeletal muscle cells is governed both by common and divergent regulatory elements in cis and in trans.
منابع مشابه
Characterization of a promoter element required for transcription in myocardial cells.
Transcription of the chicken cardiac troponin T (cTNT) gene in myocardial cells requires upstream sequences not required for expression of this gene in embryonic skeletal muscle cells. Deletion analysis shows that the segment between nucleotides -247 and -201 (numbered relative to the transcription initiation site at +1) is capable of conferring cardiac specific expression to a "minimal" cTNT p...
متن کاملP-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs
Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...
متن کاملMolecular cloning and expression of chicken cardiac troponin C.
We have isolated a full length complementary DNA clone (pCTnC1) from a 19-day embryonic chicken heart library corresponding to cardiac troponin C (TnC). Sequence analysis demonstrated varying homologies with TnC complementary DNA clones isolated from developing chick skeletal muscle. Using pCTnC1 as a hybridization probe, we have determined that cardiac TnC is constitutively expressed in both a...
متن کاملStructure and regulation of the mouse cardiac troponin I gene.
The gene coding for mouse cardiac troponin I (TnI) has been cloned and sequenced. The cardiac TnI gene contains 8 exons and has an exon-intron organization similar to the quail fast skeletal TnI gene except for the region of exons 1-3, which is highly divergent. Comparative analysis suggests that cardiac TnI exon 1 corresponds to fast TnI exons 1 and 2 and that cardiac exon 3, which codes for m...
متن کاملRegulation of the rat cardiac troponin I gene by the transcription factor GATA-4.
Troponin I is a thin-filament contractile protein expressed in striated muscle. There are three known troponin I genes which are expressed in a muscle-fibre-type-specific manner in mature animals. Although the slow skeletal troponin I isoform is expressed in fetal and neonatal heart, the cardiac isoform is restricted in its expression to the myocardium at all developmental stages. To study the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 107 شماره
صفحات -
تاریخ انتشار 1988